Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 1): 131179, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552698

RESUMO

Collagen (COL) is the most widespread functional protein. Designing and developing dual-dynamic-bond cross-linked COL adhesive hydrogel sealants with multifunctional is highly advantageous for achieving a superior wound closure effect and hemostasis. In this study, we developed hybrid hydrogels consisting of fish-skin COL, oxidized sodium alginate (OSA), borax and polyvinyl alcohol (PVA) to enhance full-thickness wound healing. The hydrogels were furnished with first-rate self-healing capabilities through the dual-dynamic-bond cross-linking of dynamic Schiff base bonds (COL-OSA) and diol boric acid bonds (OSA-borax) with reversible breakage and re-formation. Moreover, the incorporation of PVA stimulated the formation of hydrogen bonds in the system, bolstering the stability of the hydrogel framework. The prepared hydrogel manifests self-healing, injectability, multifunctional adhesiveness and biodegradability. In vivo assessment of the hemostatic capacity of COSP20 hydrogel was superior to gauze both in the mice liver injury model and mice tail amputation model. In addition, a full-thickness skin wound model in mice revealed that the COSP20 hydrogel facilitated faster wound closure by accelerating reepithelialization, COL deposition and angiogenesis. These findings illustrate the potential of hybrid fish-skin COL-based hydrogels to enhance wound healing and promote rapid tissue repair, and provide new possibilities for the effective utilization of marine fishery resources.


Assuntos
Boratos , Colágeno , Peixes , Hemostasia , Hidrogéis , Pele , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Colágeno/química , Hemostasia/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/lesões , Alginatos/química , Alginatos/farmacologia , Álcool de Polivinil/química
2.
Curr Microbiol ; 81(1): 38, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091085

RESUMO

Lactobacillus paracasei (L. paracasei), a common probiotic lactobacillus, has important functions in the food industry and human health. However, different strains of L. paracasei inevitably show differences in activity and colonization resistance, leading to differentiation in their functions, as well as their physical or chemical properties. The purpose of this study was to evaluate the characteristics of L. paracasei R3 (L.p R3) isolated from healthy human feces and determine whether the criteria for edible probiotics is met. The hemolysis type, biofilm-forming ability, antibiotic susceptibility, toxicity, and effective activity of L.p R3 were determined by establishing its probiotic activity traits in vitro and in vivo. The results showed that L.p R3 had a moderate biofilm formation ability, was sensitive to 11 antibiotics, was resistant to eight antibiotics, and was not hemolytic. The culture characteristics, morphology, and biochemical responses of the strain were consistent with the seed batch characteristics. In toxicity assays, L.p R3-fed mice showed no abnormalities in body weight, growth, or various organs. Additionally, L.p R3 was found to be effective in the prevention and treatment of colorectal cancer. In conclusion, our results revealed that L.p R3 has potential value as an edible probiotic without toxic side effects and alleviated the tumor progression of colorectal cancer in mice.


Assuntos
Neoplasias Colorretais , Lacticaseibacillus paracasei , Probióticos , Camundongos , Humanos , Animais , Lactobacillus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico
3.
Inorg Chem ; 62(51): 21247-21256, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38053396

RESUMO

Dinuclear aluminum methyl complexes bearing aromatic diamine-bridged tetra(phenolato) ligands and the mononuclear aluminum methyl complex with the phenylamine-bridged bis(phenolato) ligand have been synthesized and characterized. Structure determination revealed that the Al-Al distances in these dinuclear aluminum complexes are tunable by the choice of the suitable aromatic backbone of the diamine-bridged tetra(phenolato) ligands. The catalytic behaviors of these mono- and dinuclear aluminum complexes for cyclohexene oxide (CHO) polymerization were investigated. The activities of these dinuclear Al complexes were observed to increase with the decrease of Al-Al distances, and the dinuclear Al complexes appeared to have better catalytic activity than the mononuclear Al complex, even if the Al-Al distance is as long as 9.401 Å. Dinuclear aluminum complex 2, with the shortest Al-Al distance (7.236 Å), showed the highest activity toward CHO polymerization with TOFs up to 6460 h-1 in neat CHO at 30 °C. Furthermore, comparative kinetic studies revealed that the polymerization is first-order for CHO concentration, and the reaction orders for initiator concentration are different for the mono- and dinuclear Al complexes. The polymerization mechanism study revealed that both the methyl and phenolate groups were involved in the initiation process.

4.
J Exp Bot ; 74(1): 265-282, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255218

RESUMO

PIN-FORMED- (PIN) mediated polar auxin transport plays a predominant role in most auxin-triggered organogenesis in plants. Global control of PIN polarity at the plasma membrane contributes to the essential establishment of auxin maxima in most multicellular tissues. However, establishment of auxin maxima in single cells is poorly understood. Cotton fibers, derived from ovule epidermal cells by auxin-triggered cell protrusion, provide an ideal model to explore the underlying mechanism. Here, we report that cell-specific degradation of GhPIN3a, which guides the establishment of the auxin gradient in cotton ovule epidermal cells, is associated with the preferential expression of GhROP6 GTPase in fiber cells. In turn, GhROP6 reduces GhPIN3a abundance at the plasma membrane and facilitates intracellular proteolysis of GhPIN3a. Overexpression and activation of GhROP6 promote cell elongation, resulting in a substantial improvement in cotton fiber length.


Assuntos
Proteínas de Arabidopsis , Ácidos Indolacéticos , Ácidos Indolacéticos/metabolismo , Fibra de Algodão , GTP Fosfo-Hidrolases/metabolismo , Transporte Biológico , Proteínas de Arabidopsis/metabolismo
5.
Plant Cell Rep ; 41(4): 1059-1073, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35217893

RESUMO

KEY MESSAGE: Dynamic organization of actin and microtubule cytoskeletons directs a distinct expansion behavior of cotton fiber initiation from cell elongation. Cotton fibers are highly elongated single cells derived from the ovule epidermis. Although actin and microtubule (MT) cytoskeletons have been implicated in cell elongation and secondary wall deposition, their roles in fiber initiation is poorly understood. Here, we used fluorescent probes and pharmacological approaches to study the roles of these cytoskeletal components during cotton fiber initiation. Both cytoskeletons align along the growth axis in initiating fibers. The dorsal view of ovules shows that unlike the fine actin filaments (AFs) in nonfiber cells, the AFs in fiber cells are dense and bundled. MTs are randomized in fiber cells and well-ordered in nonfiber cells. The pharmacological experiments revealed that the depolymerization of AFs and MTs assisted fiber initiation. Both AF stabilization and depolymerization inhibited fiber elongation. In contrast, the proper depolymerization of MTs promoted cell elongation, although the MT-stabilizing drug consistently resulted in a negative effect. Notably, we found that the organization of AFs was correlated with MT dynamics. Stabilizing the MTs by taxol treatment promoted the formation of AF bundles (in fiber initials) and transversely aligned AFs (in elongating fibers), whereas depolymerizing the MTs by oryzalin treatment promoted the fragmentation of AFs. Collectively, our data indicates that MTs plays a crucial role in regulating AF organization and early development of cotton fibers.


Assuntos
Actinas , Fibra de Algodão , Citoesqueleto de Actina , Citoesqueleto , Gossypium , Microtúbulos
6.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163011

RESUMO

Cotton fibers, single seed trichomes derived from ovule epidermal cells, are the major source of global textile fibers. Fiber-specific promoters are desirable to study gene function and to modify fiber properties during fiber development. Here, we revealed that Rho-related GTPase6 (GhROP6) was expressed preferentially in developing fibers. A 1240 bp regulatory region of GhROP6, which contains a short upstream regulatory sequence, the first exon, and the partial first intron, was unexpectedly isolated and introduced into transgenic cotton for analyzing promoter activity. The promoter of GhROP6 (proChROP6) conferred a specific expression in ovule surface, but not in the other floral organs and vegetative tissues. Reverse transcription PCR analysis indicated that proGhROP6 directed full-length transcription of the fused ß-glucuronidase (GUS) gene. Further investigation of GUS staining showed that proChROP6 regulated gene expression in fibers and ovule epidermis from fiber initiation to cell elongation stages. The preferential activity was enriched in fiber cells after anthesis and reached to peak on flowering days. By comparison, proGhROP6 was a mild promoter with approximately one-twenty-fifth of the strength of the constitutive promoter CaMV35S. The promoter responded to high-dosage treatments of auxin, gibberellin and salicylic acid and slightly reduced GUS activity under the in vitro treatment. Collectively, our data suggest that the GhROP6 promoter has excellent activity in initiating fibers and has potential for bioengineering of cotton fibers.


Assuntos
Glucuronidase/genética , Gossypium/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Proteínas rho de Ligação ao GTP/metabolismo , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Especificidade de Órgãos , Óvulo Vegetal/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas rho de Ligação ao GTP/genética
7.
Eur J Pharmacol ; 910: 174443, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34464604

RESUMO

Rotigotine-loaded microspheres (RoMS), a sustained-release formulation with a continuous release of rotigotine for more than 7 days in vivo, have been conducted a clinical trial for the treatment of Parkinson's disease (PD). Previous work from our laboratory showed that RoMS exerted an antinociceptive effect in rat models of inflammatory pain. The purpose of this study was to investigate the mechanisms of action underlying the antinociceptive effect of RoMS. A rat model of inflammatory pain was prepared by an intraplantar injection of carrageenan. The hot plate test and the Randall-Selitto test were used to evaluate the effect of domperidone (selective D2 receptor antagonist), D2D3 shRNA, and naloxone (nonselective opioid receptor antagonist) on RoMS-mediated antinociceptive efficacy. The expressions of D2 and D3 receptors in the striatum and periaqueductal gray were measured by Western blotting. Intracerebroventricular injection of domperidone abated the antinociceptive effect of RoMS. However, intraperitoneal injection of domperidone had no significant effect on the antinociceptive action of RoMS. Intracerebroventricular injection with D2D3 shRNA significantly attenuated the expressions of D2 and D3 receptors in the striatum and the periaqueductal gray. D2 and D3 receptors silence significantly weakened RoMS-mediated antinociceptive effect. Intracerebroventricular injection of naloxone also alleviated the antinociceptive effect of RoMS. The results suggest that RoMS-mediated antinociceptive efficacy is associated with activating central dopamine D2 and D3 receptors. Opioid receptors play a role in the antinociceptive effect of RoMS.


Assuntos
Analgésicos/farmacologia , Dopaminérgicos/farmacologia , Dopamina/metabolismo , Microesferas , Dor/tratamento farmacológico , Tetra-Hidronaftalenos/farmacologia , Tiofenos/farmacologia , Analgésicos/administração & dosagem , Animais , Carragenina/toxicidade , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Domperidona/administração & dosagem , Domperidona/farmacologia , Dopaminérgicos/administração & dosagem , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Antagonistas dos Receptores de Dopamina D2/farmacologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Injeções , Masculino , Naloxona/administração & dosagem , Naloxona/farmacologia , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/farmacologia , Dor/etiologia , Substância Cinzenta Periaquedutal/metabolismo , Ratos Sprague-Dawley , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/genética , Estresse Mecânico , Temperatura , Tetra-Hidronaftalenos/administração & dosagem , Tiofenos/administração & dosagem
8.
Ann Transl Med ; 9(12): 971, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34277771

RESUMO

BACKGROUND: Norcantharidin (NCTD) is known to impact on cell progression in many cancers; however, its activity in non-small cell lung cancer (NSCLC) has not yet been characterized. In the present study, we set out to determine the cytotoxic effects of NCTD on the proliferation and apoptosis on A549 cells and their underlying mechanisms. METHODS: NSCLC cell line A549 cells were cultured. A549 cells were treated with different concentrations of NCTD. Cell proliferation was detected by MTT and cell clone formation assay. Cell cycle and apoptosis were detected by flow cytometry. After A549 cells were treated with NCTD for 24 hours, the mitochondrial membrane potential was measured. The protein expression of Bcl-2, Bax, light chain 3 (LC3), et al. was tested by western blot. The expression of LC3 and Tom20 protein was detected by immunofluorescence. RESULTS: NCTD suppressed the proliferation of NSCLC cells while decreasing mitochondrial membrane potential and inducing G2/M phase arrest. NCTD induced apoptosis, as demonstrated by increased B-cell lymphoma 2/Bcl-2-associated X protein and Bcl-2-associated X protein/myeloid cell leukemia 1 ratios. Aside from autophagy, NCTD induced mitophagy, with an increase in LC3 expression and a decrease in sequestosome 1 (p62) expression in the cytoplasm, accompanied by increased levels of Phospho-adenosine 5'-monophosphate -activated protein kinase (p-AMPK), Phospho-c-Jun NH2-Terminal Kinase (p-JNK), and Phospho-c-jun (p-c-jun) and a decreased level of Phospho-protein kinase B (p-AKT). CONCLUSIONS: This study has elucidated that NCTD restrains NSCLC cell progression via regulation of AMPK/mammalian target of rapamycin (mTOR)/uncoordinated 51-like kinase 1 (ULK1)/JNK pathways. This evidence provides insight into a novel treatment for NSCLC.

9.
Front Plant Sci ; 11: 581983, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224170

RESUMO

Cotton fibers are single cells that show a relatively independent developmental process of cell differentiation, elongation, and secondary wall deposition. Auxin promotes fiber cell protrusion from the surface of the ovule. However, the role of auxin at other stages of cotton fiber development remains largely unknown. To gain a deeper insight into this aspect, we measured indoleacetic acid (IAA) content in developing fibers. Results showed an increase in IAA content at the transition stage from elongation to secondary cell wall deposition. Subsequently, we investigated the differences between two transgenic cottons that show upregulated and downregulated fiber auxin levels, respectively. In planta analysis revealed that, in addition to promoting cell elongation, auxin regulated the time of initiation of reactive oxygen species (ROS) production and secondary wall deposition in cotton fibers. This was closely correlated with the upregulated expression of GhRAC13, which regulates ROS-triggered cellulose synthesis. We found multiple putative auxin-responsive elements existed within the promoter region of GhRAC13, and IAA could induce proGhRAC13 activity. The dual-luciferase reporter assay further proved the activation of proGhRAC13 by GhARF5, an auxin-signaling activator. Altogether, our results suggest a role of auxin in promoting the onset of secondary growth by directly upregulating GhRAC13 expression in cotton fibers.

10.
Inorg Chem ; 58(13): 8775-8786, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31194528

RESUMO

A series of homonuclear rare-earth (RE) metal complexes (1Y, 2Yb, 3Nd, and 4La) and heteronuclear RE-Zn complexes (1Y-Zn, 3Nd-Zn, and 5Sm-Zn) stabilized by ethanolamine-bridged bis(phenolato) ligands was prepared and structurally characterized. Heteronuclear complexes are assembled through bridging acetate ligands, and their formation and characterization add to the diversity of 3d-4f complexes. Their activities in mediating reactions of CO2 and epoxides were evaluated and compared. Heteronuclear RE-Zn complexes found application in the copolymerization of cyclohexene oxide and CO2, giving rise to acetate-group-capped copolymers. Homonuclear complexes showed good activity in catalyzing the cycloaddition of variously monosubstituted epoxides and CO2 (1 bar), generating cyclic carbonates in 65-96% yield. For sterically hindered disubstituted epoxides, good yields of 60-91% were achieved in the presence of 10 bar CO2.

11.
Fish Shellfish Immunol ; 87: 371-378, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30703548

RESUMO

Thymosin hormones, which were shown to be involved in immune system development and differentiation in previous studies, have antimicrobial functions in different animals. Zebrafish are a useful model for immunology research. Although thymosin has been reported to be involved in the embryonic development of zebrafish, it is necessary to uncover the antimicrobial function of thymosin in zebrafish. In this study, we expressed thymosin ß (Tß) in zebrafish in vitro and studied its antimicrobial function. The Tß protein consists of 45 amino acids and is conserved among its family members, especially the actin-binding motif (LKKTET). Tß was expressed in all tested tissues and was highly expressed in the brain, liver and hindgut. After Aeromonas hydrophila challenge, the Tß transcript level increased in the skin, liver, kidney, spleen, thymus, foregut, gills and midgut. Purified recombinant thymosin ß (rTß) protein was used to study the antimicrobial mechanism. rTß could inhibit the growth of Staphylococcus aureus, Aeromonas hydrophila, Vibrio anguillarum, Pseudomonas aeruginosa and Klebsiella pneumoniae. rTß also binds to and agglutinates certain bacteria. Further study showed that rTß could combine with the polysaccharides from gram-negative and gram-positive bacterial walls. All results suggested that the Tß of zebrafish plays a significant role in innate antibacterial immune responses.


Assuntos
Proteínas de Peixes/imunologia , Imunidade Inata/fisiologia , Timosina/imunologia , Peixe-Zebra/imunologia , Aeromonas hydrophila/fisiologia , Animais , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária
12.
Oncol Rep ; 41(3): 1627-1637, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30569149

RESUMO

MicroRNA­21 (miR­21) has been revealed to play a crucial role in regulating the biological behavior, including proliferation, migration, invasion and metastasis in certain cancers. However, its role in esophageal squamous cell carcinoma (ESCC) has yet to be elucidated. Based on the data of GSE13937 downloaded from Gene Expression Omnibus (GEO) database, miR­21 was revealed to be one of the top 20 differentially expressed (DE) miRNAs screened using the Morpheus online tool. RAS p21 protein activator 1 (RASA1) was predicted as the target gene of miR­21 using the predicting software and was combined with miR­21 using the luciferase reporter assay. Its relative expression was significantly decreased, however, miR­21 was increased in the tumor tissues compared to the normal adjacent tissues in patients with ESCC as determined by quantitative polymerase chain reaction (q­PCR). Furthermore, overexpression of miR­21 (mimic) could significantly decrease the gene level of RASA1. Conversely, downregulation of miR­21 (inhibitor) significantly increased the gene level of RASA1, while downregulation of RASA1 (siRASA1) markedly increased the gene expression of miR­21. Notably, the expression of Snail and vimentin were significantly increased by upregulation of miR­21 and downregulation of RASA1. Transwell results revealed that miR­21 and RASA1 regulated proliferation, migration and invasion in ESCC cells. In an in vivo model, miR­21 inhibitor (antagomir) could inhibit tumor growth. In conclusion, miR­21 regulated cell proliferation, migration, invasion and tumor growth of ESCC by directly targeting RASA1, which may have been achieved via regulation of Snail and vimentin. Anti­miR­21 revealed an antitumor effect. Thus, it may be considered as a possible target for ESCC therapy.


Assuntos
Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Proteína p120 Ativadora de GTPase/genética , Idoso , Animais , Antagomirs/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação para Baixo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Esôfago/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail/metabolismo , Regulação para Cima , Vimentina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína p120 Ativadora de GTPase/metabolismo
13.
Technol Cancer Res Treat ; 17: 1533033818806499, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30355273

RESUMO

Gastric cancer is a deadly disease. Some microRNAs are involved in tumor invasion and metastasis. Underexpression of miR-375 has been correlated with tumorigenesis, treatment resistance, and poor prognosis. In this study, we first analyzed the profiles and prognostic values of miR-375 expression in gastric cancer tissues from a public database, and the expression level of miR-375 in gastric cancer samples and gastric cancer cell lines was then analyzed by quantitative real- time polymerase chain reaction. Significant underexpression of miR-375 was seen in all the gastric cancer samples compared to paired paracarcinoma tissues, and the expression level of miR-375 in the gastric cancer cell lines was negatively associated with the cell migration ability. A Cell proliferation (CCK-8) assay was performed to examine cell viability. Overexpression of miR-375 suppressed the proliferation of gastric cancer cells. A Western blot analysis was carried out to test protein expression. Overexpression of miR-375 inhibited autophagy through the AKT/ mammalian target of rapamycin signaling pathway. MiR-375 regulated invasion and migration via AKT/ mammalian target of rapamycin pathway-mediated epithelial-to-mesenchymal transition. Wound healing and migration assays were used to determine the motility of gastric cancer cells. A gastric cancer xenograft nude mouse model was used for an in vivo efficacy evaluation. Overexpression of miR-375 significantly suppressed cell proliferation in the established gastric cancer xenograft nude mouse model. Our results demonstrate that increasing the expression level of miR-375 suppresses proliferation in vitro and in vivo, and they provide a mechanistic and applicable rationale for the future clinical evaluation of miR-375 in gastric cancer treatment. Our findings provide not only new information about the molecular mechanism of microRNAs in regulating invasion and migration in gastric cancer but also a theoretical principle for a potential targeted therapy for gastric cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus
14.
Exp Ther Med ; 16(2): 1121-1130, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30112053

RESUMO

The aim of the present study was to identify the differentially expressed genes (DEGs) in esophageal squamous-cellcarcinoma (ESCC) and provide potential therapeutic targets. The microarray dataset GSE20347 was downloaded from the Gene Expression Omnibus (GEO) database, and included 17 tissue samples and 13 normal adjacent tissue samples from patients with ESCC. A total of 22,277 DEGs were identified. A heat map for the DEGs was constructed with the Morpheus online tool and the top 200 genes (100 upregulated and 100 downregulated) were selected for further bioinformatics analysis, including analysis of gene ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, protein-protein interaction networks and Spearman's correlation tests. The results of the GO analysis indicated that the upregulated DEGs were most significantly enriched in membrane-bounded vesicles in the cellular component (CC) category, but were not significantly enriched in any GO terms of the categories biological process (BP) or molecular function (MF); furthermore, the downregulated DEGs were most significantly enriched in regulation of DNA metabolic processes, nucleotide binding and chromosomes in the categories BP, MF and CC, respectively. The KEGG analysis indicated that the downregulated DEGs were enriched in the regulation of cell cycle pathways. The top 10 hub proteins in the protein-protein interaction network were cyclin-dependent kinase 4, budding uninhibited by benzimidazoles 1, cyclin B2, heat shock protein 90AA1, aurora kinase A, H2A histone family member Z, replication factor C subunit 4, and minichromosome maintenance complex component 2, -4 and -7. These proteins are mainly involved in regulating tumor progression. The genes in the four top modules were mainly implicated in regulating cell cycle pathways. Secreted Ly-6/uPAR-related protein (SLURP) was the hub gene, and SLURP and its interacting genes were most enriched in the chromosomal part in the CC category, organelle organization in the BP category and protein binding in the MF category, and were involved in pathways including DNA replication, cell cycle and P53 signaling. The expression of SLURP-1 in fifteen patients with esophageal carcinoma was detected using quantitative polymerase chain reaction analysis, and the results indicated that SLURP-1 expression was significantly decreased in the tumor samples relative to that in normal adjacent tissues. These results suggest that several hub proteins and the hub gene SLURP-1 may serve as potential therapeutic targets, and that gene dysfunction may be involved in the tumorigenesis of ESCC.

15.
J Exp Clin Cancer Res ; 37(1): 97, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29716622

RESUMO

BACKGROUND: Gastric cancer is the leading cause of cancer related death worldwide. Radiation alone or combined with chemotherapy plays important role in locally advanced and metastatic gastric adenocarcinoma. MDM2-p53 interaction and downstream signaling affect cellular response to DNA damage which leads to cell cycle arrest and apoptosis. Therefore, restoring p53 function by inhibiting its interaction with MDM2 is a promising therapeutic strategy for cancer. APG-115 is a novel small molecule inhibitor which blocks the interaction of MDM2 and p53. In this study, we investigated that the radiosensitivity of APG-115 in gastric adenocarcinoma in vitro and in vivo. METHODS: The role of APG-115 in six gastric cancer cells viability in vitro was determined by CCK-8 assay. The expression level of MDM2, p21, PUMA and BAX in AGS and MKN45 cell lines was measured via real-time PCR (RT-PCR). The function of treatment groups on cell cycle and cell apoptosis were detected through Flow Cytometry assay. Clonogenic assays were used to measure the radiosensitivity of APG-115 in p53 wild type gastric cancer cell lines. Western blot was conducted to detect the protein expressions of mdm2-p53 signal pathway. Xenograft models in nude mice were established to explore the radiosensitivity role of APG-115 in gastric cancer cells in vivo. RESULTS: We found that radiosensitization by APG-115 occurred in p53 wild-type gastric cancer cells. Increasing apoptosis and cell cycle arrest was observed after administration of APG-115 and radiation. Radiosensitivity of APG-115 was mainly dependent on MDM2-p53 signal pathway. In vivo, APG-115 combined with radiation decreased xenograft tumor growth much more significantly than either single treatment. Moreover, the number of proliferating cells (Ki-67) significantly decreased in combination group compared with single treatment group. CONCLUSIONS: In summary, we found that combination of MDM2-p53 inhibitor (APG-115) and radiotherapy can enhance antitumor effect both in vitro and in vivo. This is the first report on radiosensitivity of APG-115 which shed light on clinical trial of the combination therapy of radiation with APG-115 in gastric adenocarcinoma.


Assuntos
Adenocarcinoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/patologia , Animais , Apoptose , Humanos , Camundongos , Camundongos Nus , Tolerância a Radiação , Neoplasias Gástricas/patologia
17.
Biochem Pharmacol ; 154: 127-135, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29679556

RESUMO

Check point inhibitor anti-PD1 antibody produced some efficacy in Hepatocellular Carcinoma (HCC) patients previously treated with sorafenib. Unfortunately, HCC patients with hepatitis B virus (HBV) infection did not respond as well as uninfected patients. Previously, Second mitochondria-derived activator of caspases (SMAC) mimetics-the antagonist for inhibitor of apoptosis proteins (IAPs) can rapidly reduce serum hepatitis B virus DNA in animal model. APG-1387 is a novel SMAC-mimetic, small molecule inhibitor targeting inhibitor of apoptosis proteins (IAPs). In our study, firstly, we found that HCC patients with copy number alteration of cIAP1, cIAP2, and XIAP had a dismal prognosis. Then, we discovered that APG-1387 alone could induce apoptosis of PLC/PRF/5 which was HBV positive both in-vitro and in-vivo. Furthermore, we found that APG-1387 significantly up-regulated the expression of calreticulin and HLA-DR in PLC/PRF/5 via activating non-classic NF-κB pathway. Also, compared to vehicle group, APG-1387 increased NK cell counts by 5 folds in PLC/PRF/5 xenograft model. In-vitro, APG-1387 positively regulated T cells by reducing Treg differentiation and down-regulating PD1 expression in CD4 T cell. Moreover, APG-1387 had no impact on memory T cells. Consequently, our results suggest that APG1387 could be a good candidate to combine with anti-PD1 antibody treatment to overcome low responds of check point inhibitors in HBV positive HCC.


Assuntos
Azepinas/uso terapêutico , Proteína 3 com Repetições IAP de Baculovírus/biossíntese , Carcinoma Hepatocelular/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , Neoplasias Hepáticas/metabolismo , Proteínas Mitocondriais/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose , Azepinas/farmacologia , Proteína 3 com Repetições IAP de Baculovírus/genética , Proteína 3 com Repetições IAP de Baculovírus/imunologia , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Camundongos , Camundongos Nus , Proteínas Mitocondriais/farmacologia , Sulfonamidas/farmacologia
18.
J Exp Clin Cancer Res ; 37(1): 53, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29530056

RESUMO

BACKGROUND: Ovarian cancer is a deadly disease. Inhibitors of apoptosis proteins (IAPs) are key regulators of apoptosis and are frequently dysregulated in ovarian cancer. Overexpression of IAPs proteins has been correlated with tumorigenesis, treatment resistance and poor prognosis. Reinstalling functional cell death machinery by pharmacological inhibition of IAPs proteins may represent an attractive therapeutic strategy for treatment of ovarian cancer. METHODS: CCK-8 and colony formation assay was performed to examine cytotoxic activity. Apoptosis was analyzed by fluorescence microscopy, flow cytometry and TUNEL assay. Elisa assay was used to determine TNFα protein. Caspase activity assay was used for caspase activation evaluation. Immunoprecipitation and siRNA interference were carried out for functional analysis. Western blotting analysis were carried out to test protein expression. Ovarian cancer cell xenograft nude mice model was used for in vivo efficacy evaluation. RESULTS: APG-1387 demonstrated potent inhibitory effect on ovarian cancer cell growth and clonogenic cell survival. APG-1387 induced RIP1- and TNFα-dependent apoptotic cell death in ovarian cancer through downregulation of IAPs proteins and induction of caspase-8/FADD/RIP1 complex, which drives caspase-8 activation. NF-κB signaling pathway was activated upon APG-1387 treatment and RIP1 contributed to NF-κB activation. APG-1387 induced cytoprotective autophagy while triggering apoptosis in ovarian cancer cells and inhibition of autophagy enhanced APG-1387-induced apoptotic cell death. APG-1387 exhibited potent antitumor activity against established human ovarian cancer xenografts. CONCLUSIONS: Our results demonstrate that APG-1387 targets IAPs proteins to potently elicit apoptotic cell death in vitro and in vivo, and provide mechanistic and applicable rationale for future clinical evaluation of APG-1387 in ovarian cancer.

19.
J Glob Antimicrob Resist ; 14: 17-22, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29476986

RESUMO

OBJECTIVES: This study aimed to describe trends in antituberculosis drug prescribing for inpatients from 2011-2015 in a Chinese national tuberculosis (TB) hospital. METHODS: This retrospective study, performed in March 2016, reviewed the medical records of all inpatients from Beijing Chest Hospital diagnosed with TB between 2011-2015. Medication used for TB treatment during the inpatient period was recorded. RESULTS: A total of 11465 inpatients were enrolled in the study. The most frequently prescribed drug for inpatients was isoniazid (71.2%; 8164/11465), followed by ethambutol (67.5%; 7738/11465), pyrazinamide (59.7%; 6839/11465) and rifampicin (40.0%; 4589/11465). In addition, amikacin (16.5%; 1889/11465), levofloxacin (33.0%; 3789/11465), para-aminosalicylic acid (12.4%; 1422/11465) and clarithromycin (3.5%; 406/11465) were the most common drugs used in the treatment of inpatients for Group II, III, IV and V drugs, respectively. A significant increasing trend in prescribing was found for rifampicin, pyrazinamide, capreomycin, moxifloxacin, prothionamide, para-aminosalicylic acid, cycloserine, clofazimine and linezolid, respectively, whilst there was a significant decreasing trend in the rate of prescribing of ethambutol, amikacin, levofloxacin, amoxicillin/clavulanic acid and clarithromycin during the 5-year study period (Ptrend<0.01). CONCLUSIONS: These data demonstrate that prescription of anti-TB drugs varied greatly across clinical diagnostic categories, treatment history and drug susceptibility profiles of TB patients. The World Health Organization (WHO)-endorsed standard regimen should be more extensively employed under conditions where drug susceptibility testing is unavailable in order to guide clinicians to formulate a suitable treatment regimen for TB patients.


Assuntos
Antituberculosos/uso terapêutico , Prescrições de Medicamentos/estatística & dados numéricos , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , China , Hospitais de Doenças Crônicas/estatística & dados numéricos , Humanos , Pacientes Internados , Isoniazida/uso terapêutico , Linezolida/uso terapêutico , Prontuários Médicos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Estudos Retrospectivos , Rifampina/uso terapêutico
20.
Int J Oncol ; 51(2): 563-572, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28586007

RESUMO

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Despite improved remission rates, current treatment regimens for AML are often associated with a very poor prognosis and adverse effects, necessitating more effective and safer agents. B-cell leukemia/lymphoma 2 (Bcl-2) family proteins regulate apoptotic pathway that can be targeted with small molecule inhibitors. APG-1252-12A is a Bcl-2 homology (BH)-3 mimetic that specifically binds to Bcl-2 and Bcl-xl, which has shown efficacy in some Bcl-2 dependent hematological cancers. In this study, we investigated whether APG-1252-12A inhibits the growth of five leukemia cell lines in a concentration- or time-dependent manner by MTS assay. Following treatment of AML cell line HL-60 with this compound, cell apoptosis was detected using flow cytometry and nuclear condensation was observed after Hoechst 33258 dye. Immunoblotting for cytochrome c, cleaved caspase-3 and PARP-1 cleavage was used to demonstrate the mechanism of inducing mitochondria-dependent apoptosis by APG-1252-12A. Our findings showed that this new compound inhibited cell proliferation in five leukemia cell lines and induced apoptotic death. There was a link between the level of Bcl-2 protein and IC50. APG-1252-12A targeted mitochondria and induced caspase-dependent apoptosis by inducing the HL-60 cell cytochrome c released, PARP cleavage and caspase activation. These data suggested that APG-1252-12A is a candidate drug for the in vivo analysis and clinical evaluation in AML.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína bcl-X/genética , Caspase 3/genética , Citocromos c/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Poli(ADP-Ribose) Polimerase-1/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/química , Proteína bcl-X/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA